MapReduce 是 Google 提出的一个软件架构,一般用于大规模数据集的并行运算。核心概念就是”Map(映射)“和”Reduce(化简)”。
简单说来就是把一个任务分割成多个独立的子任务,子任务的分发由 map 实现,子任务计算结果的合并由 reduce 实现。
mapreduce 的应用场景多是那种互不依赖,上下文无关的任务。所以类似 Fibonacci 数列这种对输入有依赖的就不适合使用 mapreduce。
回到正题,要计算圆周率,我们先构建这么个模型
# 外面的正方形面积
As = (2r)(2r) or 4r*r
# 里面的圆的面积
Ac = pi*r*r
pi = Ac / (r*r)
As = 4r*r
r*r = As / 4
pi = 4 * Ac / As
也就是说只要算出圆的面积与正方形面积的比,就可以求出圆周率。
可以通过以下步骤计算 Ac / As:
- 随机在正方形里生成许多点
- 计算点在圆内与在正方形内的比例
测试的随机点越多,结果越精确
#coding=utf-8
import random
import multiprocessing
from multiprocessing import Process
class MapReduce(object):
def __init__(self, map_func, reduce_func, workers_num=None):
self.map_func = map_func
self.reduce_func = reduce_func
self.workers_num = workers_num
if not workers_num:
workers_num = multiprocessing.cpu_count()*2
self.pool = multiprocessing.Pool(workers_num)
def __call__(self, inputs):
map_result = self.pool.map(self.map_func, inputs)
reduce_result = self.reduce_func(map_result)
return reduce_result
def calculator(*args):
print multiprocessing.current_process().name,' processing'
points, circle_round = args[0]
points_in_circle = 0
for i in range(points):
# 这里其实只取了1/4圆
x = random.random()*circle_round
y = random.random()*circle_round
if (x**2 + y**2) < circle_round**2:
points_in_circle += 1
return points_in_circle
def count_circle_points(points_list):
return sum(points_list)
if __name__ == '__main__':
# 半径
CIRCLE_ROUND = 10
# 总点数
POINTS = 10000000
# 总进程数
WORKERS_NUM = 10
map_reduce = MapReduce(calculator, count_circle_points, WORKERS_NUM)
inputs = [(POINTS/WORKERS_NUM, CIRCLE_ROUND)] * WORKERS_NUM
all_points_in_circle = map_reduce(inputs)
ac_as = float(all_points_in_circle)/POINTS
print 'pi approach to:%7f'%(4*ac_as)
这是比较简单的单机 mapreduce,用多进程就可以实现。如果是多机运算的话,就麻烦多了,类似这张图:
图片链接失效了···
参考链接[2]有对这张图的解释
参考: